Interface RecommMetricConfigurator<U,F>
- Type Parameters:
U
- type of the users.F
- type of the features.
- All Known Implementing Classes:
CommunityRecallConfigurator
,ERRIAConfigurator
,IntraListDiversityConfigurator
,LongTailNoveltyConfigurator
,MAPConfigurator
,MeanPredictionDistanceConfigurator
,NDCGConfigurator
,PrecisionConfigurator
,PredictionGiniComplementConfigurator
,RecallConfigurator
,UnexpectednessConfigurator
public interface RecommMetricConfigurator<U,F>
Class for configuring a given recommendation metric.
-
Method Summary
Modifier and Type Method Description java.util.Map<java.lang.String,RecommendationMetricFunction<U,F>>
grid(Grid grid)
Obtains the different recommendation algorithms to execute in a grid.java.util.Map<java.lang.String,java.util.function.Supplier<es.uam.eps.ir.ranksys.metrics.SystemMetric<U,U>>>
grid(Grid grid, Graph<U> trainGraph, Graph<U> testGraph, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> trainData, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> testData, es.uam.eps.ir.ranksys.core.feature.FeatureData<U,F,java.lang.Double> featureData, Communities<U> comms)
Obtains the different recommendation algorithms to execute in a grid.
-
Method Details
-
grid
Obtains the different recommendation algorithms to execute in a grid.- Parameters:
grid
- The grid for the algorithm.- Returns:
- a map containing the different recommendations.
-
grid
java.util.Map<java.lang.String,java.util.function.Supplier<es.uam.eps.ir.ranksys.metrics.SystemMetric<U,U>>> grid(Grid grid, Graph<U> trainGraph, Graph<U> testGraph, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> trainData, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> testData, es.uam.eps.ir.ranksys.core.feature.FeatureData<U,F,java.lang.Double> featureData, Communities<U> comms)Obtains the different recommendation algorithms to execute in a grid.- Parameters:
grid
- the grid containing the different parameters for the metric.trainGraph
- the training network.testGraph
- the test network.trainData
- the training preference data.testData
- the test preference data.featureData
- the feature data.comms
- the communities for the users in the network.- Returns:
- a map containing the different recommendations.
-