Interface RecommMetricConfigurator<U,F>
- Type Parameters:
U- type of the users.F- type of the features.
- All Known Implementing Classes:
CommunityRecallConfigurator,ERRIAConfigurator,IntraListDiversityConfigurator,LongTailNoveltyConfigurator,MAPConfigurator,MeanPredictionDistanceConfigurator,NDCGConfigurator,PrecisionConfigurator,PredictionGiniComplementConfigurator,RecallConfigurator,UnexpectednessConfigurator
public interface RecommMetricConfigurator<U,F>
Class for configuring a given recommendation metric.
-
Method Summary
Modifier and Type Method Description java.util.Map<java.lang.String,RecommendationMetricFunction<U,F>>grid(Grid grid)Obtains the different recommendation algorithms to execute in a grid.java.util.Map<java.lang.String,java.util.function.Supplier<es.uam.eps.ir.ranksys.metrics.SystemMetric<U,U>>>grid(Grid grid, Graph<U> trainGraph, Graph<U> testGraph, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> trainData, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> testData, es.uam.eps.ir.ranksys.core.feature.FeatureData<U,F,java.lang.Double> featureData, Communities<U> comms)Obtains the different recommendation algorithms to execute in a grid.
-
Method Details
-
grid
Obtains the different recommendation algorithms to execute in a grid.- Parameters:
grid- The grid for the algorithm.- Returns:
- a map containing the different recommendations.
-
grid
java.util.Map<java.lang.String,java.util.function.Supplier<es.uam.eps.ir.ranksys.metrics.SystemMetric<U,U>>> grid(Grid grid, Graph<U> trainGraph, Graph<U> testGraph, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> trainData, es.uam.eps.ir.ranksys.core.preference.PreferenceData<U,U> testData, es.uam.eps.ir.ranksys.core.feature.FeatureData<U,F,java.lang.Double> featureData, Communities<U> comms)Obtains the different recommendation algorithms to execute in a grid.- Parameters:
grid- the grid containing the different parameters for the metric.trainGraph- the training network.testGraph- the test network.trainData- the training preference data.testData- the test preference data.featureData- the feature data.comms- the communities for the users in the network.- Returns:
- a map containing the different recommendations.
-