Class ClusteringCoefficientComplement<U>
java.lang.Object
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker<U,I>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker<U,U>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.graph.ClusteringCoefficientComplement<U>
- Type Parameters:
U- type of the users.
- All Implemented Interfaces:
GlobalReranker<U,U>
public class ClusteringCoefficientComplement<U> extends GlobalRankingLambdaReranker<U,U>
Global reranker strategy that optimizes the clustering coefficient complement of
the network.
-
Field Summary
Fields Modifier and Type Field Description private Graph<U>graphThe graph.private doubletrianglesThe number of triangles in the network.private doubletripletsThe number of triplets in the network.Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
lambda, novStats, recStatsFields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
cutOff -
Constructor Summary
Constructors Constructor Description ClusteringCoefficientComplement(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph)Constructor. -
Method Summary
Modifier and Type Method Description protected doublenov(U user, org.ranksys.core.util.tuples.Tuple2od<U> tpld)Finds the novelty score for a user-item pair.protected voidupdate(U user, org.ranksys.core.util.tuples.Tuple2od<U> selectedItem)Updates the value of the objective function after a selection.Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
score, selectRecommendationMethods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
rerankRecommendations
-
Field Details
-
Constructor Details
-
ClusteringCoefficientComplement
public ClusteringCoefficientComplement(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph)Constructor.- Parameters:
lambda- trade-off between the recommendation score and the novelty/diversity value.cutoff- number of elements to take.norm- the normalization strategy.graph- the original graph.
-
-
Method Details
-
nov
Description copied from class:GlobalRankingLambdaRerankerFinds the novelty score for a user-item pair.- Specified by:
novin classGlobalRankingLambdaReranker<U,U>- Parameters:
user- the target user.tpld- the candidate item (with its score).- Returns:
- the novelty value for the item.
-
update
Description copied from class:GlobalRankingGreedyRerankerUpdates the value of the objective function after a selection.- Specified by:
updatein classGlobalRankingGreedyReranker<U,U>- Parameters:
user- the selected user.selectedItem- the selected item and its score.
-