Type Parameters:
U - type of the users.
All Implemented Interfaces:
GlobalReranker<U,​U>
Direct Known Subclasses:
OriginalDirectEdgeMetricReranker, OriginalInverseEdgeMetricReranker, ProgressiveDirectEdgeMetricReranker, ProgressiveInverseEdgeMetricReranker

public abstract class EdgeMetricReranker<U>
extends GraphLocalReranker<U>
Reranker strategy that optimizes the average value of an edge metric.
  • Field Details

  • Constructor Details

    • EdgeMetricReranker

      public EdgeMetricReranker​(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, PairMetric<U> metric)
      Constructor.
      Parameters:
      lambda - trade-off between the recommendation score and the novelty/diversity value.
      cutoff - number of elements to take.
      norm - the normalization strategy.
      graph - the original graph.
      metric - the metric we want to optimize.