Class EdgeMetricReranker<U>
java.lang.Object
es.uam.eps.ir.ranksys.novdiv.reranking.PermutationReranker<U,I>
es.uam.eps.ir.ranksys.novdiv.reranking.GreedyReranker<U,I>
es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker<U,U>
es.uam.eps.ir.relison.links.recommendation.reranking.local.edge.EdgeMetricReranker<U>
- Type Parameters:
U
- Type of the users
- All Implemented Interfaces:
es.uam.eps.ir.ranksys.novdiv.reranking.Reranker<U,U>
- Direct Known Subclasses:
OriginalDirectEdgeMetricReranker
,OriginalInverseEdgeMetricReranker
,ProgressiveDirectEdgeMetricReranker
,ProgressiveInverseEdgeMetricReranker
public abstract class EdgeMetricReranker<U> extends LambdaReranker<U,U>
Abstract implementation of a reranking algorithm that modifies the ranking according
to the values of an edge metric.
Individually reranks each recommendation.
-
Nested Class Summary
Nested Classes Modifier and Type Class Description protected class
EdgeMetricReranker.GraphMetricEdgeReranker
Class that reranks an individual recommendation using edge metrics.Nested classes/interfaces inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
LambdaReranker.LambdaUserReranker
-
Field Summary
Fields Modifier and Type Field Description protected Graph<U>
graph
The graph.protected PairMetric<U>
metric
The selected metric.Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
lambda
-
Constructor Summary
Constructors Constructor Description EdgeMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, PairMetric<U> metric)
Constructor. -
Method Summary
Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
getUserReranker, rerankPermutation
-
Field Details
-
Constructor Details
-
EdgeMetricReranker
public EdgeMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, PairMetric<U> metric)Constructor.- Parameters:
lambda
- trade-off between the recommendation score and the novelty/diversity value.cutoff
- number of elements to take.norm
- the normalization strategy.graph
- the original graph.metric
- the metric to optimize.
-