Class UserMetricReranker<U>
java.lang.Object
es.uam.eps.ir.ranksys.novdiv.reranking.PermutationReranker<U,I>
es.uam.eps.ir.ranksys.novdiv.reranking.GreedyReranker<U,I>
es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker<U,U>
es.uam.eps.ir.relison.links.recommendation.reranking.local.user.UserMetricReranker<U>
- Type Parameters:
U
- type of the users
- All Implemented Interfaces:
es.uam.eps.ir.ranksys.novdiv.reranking.Reranker<U,U>
- Direct Known Subclasses:
OriginalDirectUserMetricReranker
,OriginalInverseUserMetricReranker
,ProgressiveDirectUserMetricReranker
,ProgressiveInverseUserMetricReranker
public abstract class UserMetricReranker<U> extends LambdaReranker<U,U>
Individual reranker, which reorders a recommendation according to
a user metric we want to optimize.
-
Nested Class Summary
Nested Classes Modifier and Type Class Description protected class
UserMetricReranker.UserMetricUserReranker
Individual user reranker that promotesNested classes/interfaces inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
LambdaReranker.LambdaUserReranker
-
Field Summary
Fields Modifier and Type Field Description protected Graph<U>
graph
The graph.protected VertexMetric<U>
metric
The selected metricFields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
lambda
-
Constructor Summary
Constructors Constructor Description UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)
Constructor. -
Method Summary
Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.local.LambdaReranker
getUserReranker, rerankPermutation
-
Field Details
-
Constructor Details
-
UserMetricReranker
public UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)Constructor.- Parameters:
lambda
- param that establishes a balance between the score and the novelty/diversity value.cutoff
- number of elements to take.norm
- the normalization function.graph
- the graph.metric
- the metric to optimize.
-