Index
A B C D E F G H I J K L M N O P Q R S T U V W Z
All Classes|All Packages
All Classes|All Packages
All Classes|All Packages
K
- k - Variable in class es.uam.eps.ir.relison.links.data.letor.sampling.RecommenderIndividualSampler
-
The cutoff of the recommendation.
- k - Variable in class es.uam.eps.ir.relison.links.data.ml.balance.SMOTEBalancer
-
Number of neighbours.
- k - Variable in class es.uam.eps.ir.relison.links.recommendation.algorithms.knn.similarities.ir.BM25Similarity
-
Parameter of the algorithm that tunes the effect of the weight
- k - Variable in class es.uam.eps.ir.relison.links.recommendation.algorithms.standalone.ir.BM25
-
Parameter that tunes the effect of the term frequency on the formula.
- k - Variable in class es.uam.eps.ir.relison.links.recommendation.algorithms.standalone.pathbased.LocalPathIndex
-
The maximum distance between users.
- k - Variable in class es.uam.eps.ir.relison.links.recommendation.updateable.ir.UpdateableBM25
-
Parameter that tunes the effect of the term frequency on the formula.
- k - Variable in class es.uam.eps.ir.relison.links.recommendation.updateable.knn.user.UpdateableUBkNN
-
The number of neighbors to select.
- k - Variable in class es.uam.eps.ir.relison.sna.community.clustering.KMeans
-
The number of desired clusters.
- k - Variable in class es.uam.eps.ir.relison.sna.community.detection.modularity.balanced.SpectralClustering
-
The number of clusters we want to find.
- K - Static variable in class es.uam.eps.ir.relison.grid.community.modularity.balanced.NormalizedCutSpectralClusteringConfigurator
-
Identifier for the desired number of communities
- K - Static variable in class es.uam.eps.ir.relison.grid.community.modularity.balanced.RatioCutSpectralClusteringConfigurator
-
Identifier for the desired number of communities
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.knn.ItemBasedCFGridSearch
-
Identifier for the number of neighbors of the algorithm.
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.knn.UserBasedCFGridSearch
-
Identifier for the number of neighbors of the algorithm.
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.ir.BM25GridSearch
-
Identifier for parameter k
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.mf.FastImplicitMFGridSearch
-
Identifier for indicating if teleport always goes to the origin node.
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.mf.ImplicitMFGridSearch
-
Identifier for the number of latent factors.
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.pathbased.LocalPathIndexGridSearch
-
Identifier for the maximum distance from the target to the candidate users.
- K - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.sampling.RecommenderIndividualSamplerConfigurator
-
Identifier for the cutoff of the recommendation.
- K - Variable in class es.uam.eps.ir.relison.links.recommendation.updateable.mf.UpdateableFactorization
-
dimensionality of the vector space
- Katz<U> - Class in es.uam.eps.ir.relison.links.recommendation.algorithms.standalone.pathbased
-
Katz algorithm.
- Katz(FastGraph<U>, double) - Constructor for class es.uam.eps.ir.relison.links.recommendation.algorithms.standalone.pathbased.Katz
-
Constructor.
- Katz(FastGraph<U>, double, EdgeOrientation) - Constructor for class es.uam.eps.ir.relison.links.recommendation.algorithms.standalone.pathbased.Katz
-
Constructor.
- KATZ - Static variable in class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.AlgorithmIdentifiers
-
Identifier for the Katz algorithm.
- KATZ - Static variable in class es.uam.eps.ir.relison.grid.sna.vertex.VertexMetricIdentifiers
-
Identifier for the Katz centrality.
- KatzCentrality<U> - Class in es.uam.eps.ir.relison.sna.metrics.vertex
-
Finds the Katz centrality of the nodes, which estimates the importance of a node considering the paths between the node and the rest of the network.
- KatzCentrality(double) - Constructor for class es.uam.eps.ir.relison.sna.metrics.vertex.KatzCentrality
-
Constructor.
- KatzCentrality(EdgeOrientation, double) - Constructor for class es.uam.eps.ir.relison.sna.metrics.vertex.KatzCentrality
-
Constructor.
- KatzCentrality(MatrixLibrary, double) - Constructor for class es.uam.eps.ir.relison.sna.metrics.vertex.KatzCentrality
-
Constructor.
- KatzCentrality(MatrixLibrary, EdgeOrientation, double) - Constructor for class es.uam.eps.ir.relison.sna.metrics.vertex.KatzCentrality
-
Constructor.
- KatzCentralityGridSearch<U> - Class in es.uam.eps.ir.relison.grid.sna.vertex
-
Grid for the Katz centrality of a node.
- KatzCentralityGridSearch() - Constructor for class es.uam.eps.ir.relison.grid.sna.vertex.KatzCentralityGridSearch
- KatzGridSearch<U> - Class in es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.pathbased
-
Grid search generator for Katz algorithm.
- KatzGridSearch() - Constructor for class es.uam.eps.ir.relison.grid.links.recommendation.algorithms.standalone.pathbased.KatzGridSearch
- KLD - Static variable in class es.uam.eps.ir.relison.grid.diffusion.metrics.MetricIdentifiers
-
Identifier for the individual feature KL divergence metric.
- KLDivergence - Class in es.uam.eps.ir.relison.utils.indexes
-
Computes the KL divergence as a distance between two distributions (an original one, P(x), and an estimated one from real data Q(x).
- KLDivergence() - Constructor for class es.uam.eps.ir.relison.utils.indexes.KLDivergence
- KMeans - Class in es.uam.eps.ir.relison.sna.community.clustering
-
Implementation of the k-means clustering algorithm.
- KMeans(int) - Constructor for class es.uam.eps.ir.relison.sna.community.clustering.KMeans
-
Constructor.
All Classes|All Packages