Class ProgressiveInverseUserMetricReranker<U>

Type Parameters:
U - type of the users
All Implemented Interfaces:
GlobalReranker<U,​U>

public class ProgressiveInverseUserMetricReranker<U>
extends UserMetricReranker<U>
Global reranker that minimizes the average value of vertex metric. The value of the metric when the edge is added to the graph is considered.
  • Field Summary

    Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.user.UserMetricReranker

    graph, metric

    Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker

    lambda, novStats, recStats

    Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker

    cutOff
  • Constructor Summary

    Constructors 
    Constructor Description
    ProgressiveInverseUserMetricReranker​(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)
    Constructor.
  • Method Summary

    Modifier and Type Method Description
    protected double nov​(U user, org.ranksys.core.util.tuples.Tuple2od<U> iv)
    Finds the novelty score for a user-item pair.
    protected void update​(U user, org.ranksys.core.util.tuples.Tuple2od<U> iv)
    Updates the value of the objective function after a selection.

    Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker

    score, selectRecommendation

    Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker

    rerankRecommendations

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • ProgressiveInverseUserMetricReranker

      public ProgressiveInverseUserMetricReranker​(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)
      Constructor.
      Parameters:
      lambda - trade-off between the recommendation score and the novelty/diversity value.
      cutoff - number of elements to take.
      norm - the normalization strategy.
      graph - the original graph.
      metric - the metric we want to optimize.
  • Method Details

    • nov

      protected double nov​(U user, org.ranksys.core.util.tuples.Tuple2od<U> iv)
      Description copied from class: GlobalRankingLambdaReranker
      Finds the novelty score for a user-item pair.
      Specified by:
      nov in class GlobalRankingLambdaReranker<U,​U>
      Parameters:
      user - the target user.
      iv - the candidate item (with its score).
      Returns:
      the novelty value for the item.
    • update

      protected void update​(U user, org.ranksys.core.util.tuples.Tuple2od<U> iv)
      Description copied from class: GlobalRankingGreedyReranker
      Updates the value of the objective function after a selection.
      Specified by:
      update in class GlobalRankingGreedyReranker<U,​U>
      Parameters:
      user - the selected user.
      iv - the selected item and its score.