Class UserMetricReranker<U>
java.lang.Object
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker<U,I>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker<U,U>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.user.UserMetricReranker<U>
- Type Parameters:
U- type of the users.
- All Implemented Interfaces:
GlobalReranker<U,U>
- Direct Known Subclasses:
OriginalDirectUserMetricReranker,OriginalInverseUserMetricReranker,ProgressiveDirectUserMetricReranker,ProgressiveInverseUserMetricReranker
public abstract class UserMetricReranker<U> extends GlobalRankingLambdaReranker<U,U>
Global reranker strategy that reorders the candidate users according to
a user metric that we want to optimize.
-
Field Summary
Fields Modifier and Type Field Description protected Graph<U>graphThe original graph.protected VertexMetric<U>metricThe selected metricFields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
lambda, novStats, recStatsFields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
cutOff -
Constructor Summary
Constructors Constructor Description UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)Constructor. -
Method Summary
Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
nov, score, selectRecommendationMethods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
rerankRecommendations, update
-
Field Details
-
Constructor Details
-
UserMetricReranker
public UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)Constructor.- Parameters:
lambda- trade-off between the recommendation score and the novelty/diversity value.cutoff- number of elements to take.norm- the normalization strategy.graph- the original graph.metric- the metric we want to optimize.
-