Class UserMetricReranker<U>
java.lang.Object
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker<U,I>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker<U,U>
es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.user.UserMetricReranker<U>
- Type Parameters:
U
- type of the users.
- All Implemented Interfaces:
GlobalReranker<U,U>
- Direct Known Subclasses:
OriginalDirectUserMetricReranker
,OriginalInverseUserMetricReranker
,ProgressiveDirectUserMetricReranker
,ProgressiveInverseUserMetricReranker
public abstract class UserMetricReranker<U> extends GlobalRankingLambdaReranker<U,U>
Global reranker strategy that reorders the candidate users according to
a user metric that we want to optimize.
-
Field Summary
Fields Modifier and Type Field Description protected Graph<U>
graph
The original graph.protected VertexMetric<U>
metric
The selected metricFields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
lambda, novStats, recStats
Fields inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
cutOff
-
Constructor Summary
Constructors Constructor Description UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)
Constructor. -
Method Summary
Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingLambdaReranker
nov, score, selectRecommendation
Methods inherited from class es.uam.eps.ir.relison.links.recommendation.reranking.global.globalranking.GlobalRankingGreedyReranker
rerankRecommendations, update
-
Field Details
-
Constructor Details
-
UserMetricReranker
public UserMetricReranker(double lambda, int cutoff, java.util.function.Supplier<Normalizer<U>> norm, Graph<U> graph, VertexMetric<U> metric)Constructor.- Parameters:
lambda
- trade-off between the recommendation score and the novelty/diversity value.cutoff
- number of elements to take.norm
- the normalization strategy.graph
- the original graph.metric
- the metric we want to optimize.
-